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ABSTRACT 

The spectrum of e l e c t r o s t a t i c  po ten t ia l  f luctuat ions w a s  measured with a 

capacitive probe i n  a steady-state, turbulent plasma confined i n  a magnetic 

mirror geometry. The plasma conditions ranged over 5 x 1 0 ~  $ne  2 5x10 /a , 
8 < T c 38 e V ,  350 5 Ti 930 e V ,  and Bmax = 1.OT. When osc i l l a t ion  peaks e -  

were absent, the  background spectrum of e l e c t r o s t a t i c  po ten t ia l  f luctuat ions 

had a power-law dependence on frequency of t he  form $ = $,v-" 

0.2 t o  1.0 MHz. The value of t h e  spec t r a l  index n depended on t h e  probe 

8 3  

- 

over the  range 

posit ion i n  t h e  magnetic f i e l d ,  and, at a given pos i t ion ,  depended on t h e  

plasma charac te r i s t ics .  The spec t r a l  index was  generally belaw t h e  value 

n = 2.5 predicted by some turbulence theories  formulated i n  k-space. En- 

hancement of the  turbulent spectrum on t h e  high frequency s ide  of  o sc i l l a t ion  

peaks indicates  t h a t  t h e  direct ion of  net energy flow i n  t h e  turbulent spec- 

trum i s  from low frequencies t o  high frequencies i n  t h i s  plasma. The e f fec ts  

of a s inusoidal  external  modulation of t he  anode voltage were assessed over 

t he  range 0-100 kHz. The spectra  exhibited several mode coupling phenomena, 

including enhanced harmonics of t h e  external ly  imposed frequency and sideband 

modulation o f  in te rna l ly  generated osc i l l a t ion  peaks. Externa l  exci ta t ion of 

t he  plasma at frequencies below 50 kHz resu l ted  i n  only a s m a l l  degree of ion 

he a t  ing 
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INTRODUCTION 

The determination of t h e  spectrum of plasma turbulence i s  a cent ra l  prob- 

l e m  of non-linear plasma theory. 

have been formulated’-’. 

A number of theories  of plasma turbulence 

These theor ies  contain s ign i f icant  differences of 

d e t a i l ,  but  a l l  predict  a power l a w  spectrum of e l e c t r o s t a t i c  po ten t i a l  fluc- 

tua t ions ,  $ $  of the form 

$ = c$Ok-m 

Under the  conditions approximating the  present experiment, f o r  large 

values of t he  wave number k, severa l  of  these theor ies  1’394’5’7 fur ther  

predict  a spec t r a l  index of m = 5 f o r  po ten t ia l  f luctuat ions at large val-  

7 ues o f .  k ,  i den t i f i ed  w i t h  the  regime of col l is iOnless  diss ipat ion by Tchen . 
Other theories2 y 5  predict  smaller values of the  spec t r a l  index fo r  neutral-  

2 5 dominated or collision-dominated plasmas. 

These analyses are based on one or more s i m p l i o i n g  assumptions, includ- 

ing t h a t  of an i n f i n i t e ,  unbounded plasma, and it would not be surpr is ing to 

f ind  t h a t  a simple power l a w  expression w i t h  m = 5 

As has been pointed out by Tchen’, Eq. (1) w i t h  

since one would expect t h e  magnitude of the spectrum t o  depend on the  rate of 

d i ss ipa t ion ,  which i s  i t se l f  dependent on wavenumber. 

d i f f i cu l ty ,  these theorles  do not take i n t o  account t h e  e f f ec t s  of gradients 

of t h e  plasma propert ies  or of the magnetic f i e ld .  It i s  therefore  of some 

t heo re t i ca l  i n t e r e s t  t o  discover whether, i n  a laboratory plasma, t h e  spec t r a l  

index i n  Eq. (I) depends upon t h e  presence o r  absence of gradienCs of these 

quant i t ies ,  or upon the  magnitude of  the plasma propert ies .  

does not hold i n  general. 

cannot be fully valid, m = 5 

In  addition t o  t h i s  
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Attempts have been made tode termine  t h e  nature  of plasma turbulence by 

using a Langmuir probe t o  measure such f luc tua t ing  plasma parameters as ion 

sa tura t ion  current 138=-13 or f loa t ing  potential8'" '12 "'--'' The spectrum of 

f luctuat ions i n  uhf emission from a plasma, near 1.0 GHz, was studied by 

17 
x Ape1 . 

These experimental approaches t o  the  problem of plasma turbulenoe have 

required the  assumption t h a t  t he  frequency, 0, and wavenumber, k ,  of the fluc- 

tuat ions a re  r e l a t ed  by a constant f ac to r  

k ( 2 )  cu?6  

since the  theor ies  are  expressed i n  k-space, but t h e  experimental equipment 

required t o  perform the  measurements renders it expedient t o  measure the  fluc- 

t u a t  i ons i n  w-space . 
I n  addition t o  t h i s  fundamental assumption, two additdcvml assumptions 

are  impl ic i t  i n  t h e  use of Langmuir probes for  such measurements. One assump- 

t i on  i s  tha t  the  frequency respgnse of t he  Langmuir  probe i s  unaffected by t h e  

plasma-probe sheath,  and the  second i s  t h a t  t h i s  i n t e r a c t i o s  does not generate 

spurious noise t h a t  might mask the  plasma turbulence,  

both assumptions m a y  be violated.  

spectrum of a Langmuir probe operating at ion sa tura t ion  d i f f e r s  subs tan t ia l ly  

There i s  evidence t h a t  

Serafini12 has shown t h a t  the frequency 

from the spectrum of e l e c t r o s t a t i c  p o t e n t i a  f luctuat ions detected by a capa- 

c i t i v e  probe a t  frequencies above 1.0 MHz, These r e s u l t s  suggest t he  poss ib i l -  

i t y  t h a t  the Langmuir probe frequency response mqf f a l l  o f f  a t  frequencies a- 

bove 1.0 MHz, and hence give an incorrect  p o t e n t i s l  spectrum. 

t h e  frequency response of Langmuir probes ( r e l a t i v e  t o  t h a t  of capaci t ive 

probes ) w a s  observed i n  other invest igat ionsl8.  

This fal l -off  i n  
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In  addition t o  t h i s  d i f f i c u l t y  w i t h  the frequency response o f  Langmuir 

probes, there  have been suggestions i n  the  recent l i t e r a t u r e  t h a t  the in t e r -  

action of a Langmuir  probe w i t h  a plasma m a y  generate spurious f luctuat ions 

not present i n  t h e  undisturbed plasma ' 9 s 2 0 e  

from 7 t o  1 0  MHz on the  s igna l  from a f loat ing Lanlpnuir probe, not observed 

w i t h  a capacit ive probe, was  measured i n  paired comparison s tudies  of these 

two types of probes18. 

0.2 _f v < 1.0 MHz, essen t i a l ly  iden t i ca l  r e s u l t s  were obtained f o r  data taken 

w i t h  Langmuir and capacit ive probes, although only t h e  l a t t e r  are reported 

herein.  

me presence of "spurious" noise 

Over the frequency range of the present invest igat ion,  

In the  present invest igat ion,  spectra  of e l e c t r o s t a t i c  po ten t ia l  f luctu- 

a t ions were taken w i t h  a capacit ive probe over the range 0.2 t o  1 . 0  MHz. The 

ef fec ts  of changes i n  plasma conditions on the  turbulent  spectrum and upon 

spec t r a l  index were investigated.  

w i t h  ex is t ing  theories  of plasma turbulence. 

These r e s u l t s  appear t o  be i n  confl ic t  

Data were Caken which appear 

relevant t o  the determination of  t he  sense of ne% energy cascading along the  

turbulent spectrum i n  frequency space. A subsequent series of experimental 

runs were taken t o  invest igate  the  nature of  t h e  mode coupling and ion heat- 

ing by an external ly  imposed exci ta t ion of t he  turbulent spectrum. 

EXPERIMENTAL ARRANGEMENTS 

A photograph of the  modified Penning discharge used i n  t h i s  experiment 

c i s  shown i n  Fig. 1. The plasma i s  confined i n  a superconducting magnetic 

mirror apparatus22 w i t h  a mirror r a t i o  of 2.6:l. 

axis occurs at t h e  magnetic mirrors,  and can be varied up t o  2.0 Tesla. Un- 

l e s s  noted otherwise, t h e  maximum magnetic f i e l d  was  set at 1 .0  T i n  t he  

The maximum f i e l d  on t h e  
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present invest igat ion.  

can be operated i n  t h e  steady s t a t e  f o r  durations up t o  several  hours 

The plasma i s  15  em i n  diameter at the  midplane, and 

23 

When a high DC po ten t i a l  i s  applied t o  t h e  anode r ing  ( the  v e r t i c a l  ele- 

ment at t h e  center of Fig. l), thermalized ions of high k ine t i c  temperature 

. On Fig. 2 i s  shown a re- are  observed coming out through t h e  mirrors 

tarding poten t ia l  curve for such ions.23 These ions have a qui te  accurately 

Maxwellian energy d is t r ibu t ion  along a radius i n  veloci ty  space, even i n  the  

high-energy t a i l .  

below i n  t h e  ion k i n e t i c  temperature i n  t h i s  plasma. The dependence of the  

ion k ine t i c  temperature on the  discharge operating conditions i s  shown i n  Fig. 

3 ,  This f igure shows t h e  ion k ine t i c  temperature p lo t ted  as a function of t h e  

DC anode voltage,  fo r  four d i f fe ren t  background pressures of deuterium gas,  

An objective of t h e  present invest igat ion w a s  t o  ident i fy  the  nature of t he  

processes responsible f o r  t h i s  thermalization and heating of t he  ions.  

23 $4 

The electron energy w a s  t yp ica l ly  more than a f ac to r  of 1 0  

Deuterium gas was used i n  the  present invest igat ion.  The range of opera- 

t i n g  conditions of t h i s  plasma i s  shown i n  Table I. The mean f r e e  paths of 

all binary charged-neutral col l is ions were much grea te r  than the  apparatus 

dimensions, and the  energy density of t h e  plasma w a s  no l e s s  than tha t  of t h e  

background neu t r a l  gas. The e l e c t r o s t a t i c  po ten t i a l  spectra  should therefore  

be charac te r i s t ic  of t h e  plasma, and not of f luctuat ions i n  t he  background 

neut ra l  gas. The measurements of spec t r a l  index were made under plasma oper- 

a t ing  conditions such t h a t  no osc i l l a t ion  peaks or t h e i r  harmonics in te r fe red  

with the  smooth background spectrum i n  the  frequency range covered. 

The pr inc ipa l  equipment used i n  t h i s  invest igat ion i s  shown i n  Fig. 4. 

During t h e  mode-coupling measurements described below the  high voltage DC 

power supply w a s  connected t o  the  anode r ing  through an inductor,  t o  i s o l a t e  
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t h i s  supply from t h e  AC power applied t o  the anode r ing.  

coupling invest igat ions,  a powerful AC amplifier w a s  a l so  connected t o  the  

anode r ing  though a su i tab le  capacitor,  t o  couple the  AC signal t o  the  anode 

r ing,  while  at t h e  same t i m e  i so l a t ing  t h e  AC power supply from the  high vol- 

tage DC b i a s  on t h e  anode ring. 

the range 1-100 kHz, and has an output of 5 kV 21MS at 5 kW. 

driven by a var iable  frequency o s c i l l a t o r ,  which provi4ed 8 sinusoidal  inpvt 

s igna l  of t h e  desired frequency. 

located i n  approximately the  posit ion shown i n  Fig. 4. 

c i t o r ,  and inductor were removed from the  c i r cu i t  during t h e  spec t r a l  index 

During these mode- 

The amplifier i s  capable of operating over 

The amplifier was 

The retarding po ten t i a l  energy analyzer was 

The amplifier,  capa- 

and energy cascading measurements described below. 

Two capacit ive probes were used t o  measure the  e l e c t r o s t a t i c  po ten t i a l  

fluc-buations i n  t h e  plasma, These probes are similar t o  t h a t  described by 

Schmidt.2o 

frequency response of t h i s  probe and i t s  associated cakhode follower and am- 

p l i f i e r  i s  shown i n  f i g ,  Y(b). 

i s  e s sen t i a l ly  constant from 1 kHz t o  10 MEz. Npte t h a t  t he  ordinate  of t he  

cal ibrat ion curve i s  t h e  s igna l  r a t i o ,  and i s  not expressed i n  db. 

A cross-section of t h e  probe used i s  shown i n  Fig. 5 (a ) .  The 

The frequency respqwe of t h e  measuring system 

By moving t h e  probe assembly a b n g  the  magnetic f i e l d  axis, t h e  two capa- 

c i t i ve  probes could be posit ioned at the  s i x  locat ions shown i n  Fig. 6. These 

posit ions were chosen t o  help dis t inguish t h e  effects on t h e  spec t r a l  index of 

various combinatiQns of r a d i a l  and axial gradients of magnetic f i e l d  and plas- 

m a  energy density.  The k i n e t i c  hemperalare and r e l a t i v e  number density of t h e  

ions escaping through the  magnetic mirrors were measured with a re-barding po- 

t e n t i a l  energy Absoluke values of t h e  electron number density and 
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k ine t i c  temperature w e r e  measured by taking conventional Langmuir probe 

t races  at posi t ion #5 shown i n  Fig. 6 -  

It w a s  recognized t h a t  t he  experimental equipment could introduce non- 

l i n e a r i t i e s  i n t o  t h e  data ,  and precautions were taken t o  avoid t h i s .  The 

elements of t he  probe system were run at aJ.1 times below sa tura t ion ,  so tha t  

no harmonic content was introduced by signal clipping. The s igna l  w a s  a l so  

kept above the  amplitude threshoLd fo r  l i n e a r  response of t he  equipment. 

ing the  measurements of spec t r a l  index, the  high-pass f i l t e r  w a s  s e t  t o  cut 

off  a l l  frequencies below 150 kHz, i n  order t o  avoid saturat ion of the  spec- 

trum analyzer and x-y recorder by large amplitude peaks, and by t h e  continuum 

spectra  below the  frequency range of  i n t e r e s t .  In  t h e  mode coupling experi- 

ments, it was ve r i f i ed  for  the  data presented here t h a t  the  harmonic content 

of the  s igna l  appearing on the  anode r ing w a s  very much smaller than t h e  

harmonics generated by the  plasma i t se l f .  Two balanced probes operating i n  

the  d i f f e r e n t i a l  mode were used t o  ver i fy  t h a t  none of t h e  s igna l  i n  t h e  

smooth background spectrum was a common mode, such as might arise from noise 

in  t h e  anode r ing sheath, for example. 

Dur- 

MEAStJREMENT OF SPECTRAL INDEX 

E lec t ros t a t i c  po ten t i a l  f luctuat ion spec t ra  were taken from both probes 

a t  a given axial  s t a t ion .  The probe assembly w a s  then moved t o  a different 

a x i a l  posi t ion with t h e  anode voltage,  tank pressure and the other  control- 

lable parameters held fixed. Typical r a w  spec t ra  are shown i n  Fig. 7(a )  for  

t he  frequency range 0.2 t o  1.0 MHz. These spec t ra  were tabulated,  corrected 

for  s m a l l  nonl inear i t ies  i n  the  probe instrumentation, and converted t o  a 

logarithmic base. An example of the corrected data fo r  t he  same two runs i s  
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p lo t t ed  on a log-log scale i n  Fig. 7(b) .  The s p e c t r a l  indices were determined 

by excluding osc i l l a t ion  peaks, harmonics of these peaks, or data  at or t o  t he  

l e f t  of t he  knee of the  curves, and then obtaining a bes t - f i t t i ng  s t r a igh t  

l i n e  t o  t h e  remaining data  with a logarithmic least-squares computer program. 

All spec t ra  had a knee, due e i t h e r  t o  the  high-pass filter or t o  the nature of 

t he  spectrum. The spec t ra  analyzed covered no less than a fac tor  of two i n  

frequency, and more typ ica l ly  covered a fac tor  of four i n  frequency. 

All of the  spec t ra  taken i n  t h i s  invest igat ion exhibited the  power l a w  

dependence of e lec t ros ta t ic -poten t ia l  amplitude, +, on frequency, v ,  given by 

t h e  expression 

-n ( 3 )  0 = 0ov 

when plasma-generated osc i l l a t ion  peaks were absent. 

t r a l  index for each s e t  of plasma conditions and a t  each posit ion i n  t h e  plas- 

m a  i s  shown i n  the  form of a scatter p lo t  i n  Fig. 8. 

index at a given plasma posi t ion i s  at l e a s t  a f ac to r  of f ive  grea te r  than t h e  

uncertainty of an individval  determination of t h e  spec t r a l  index. It should 

be noted that  the  spec t r a l  indices shown i n  Fig. 8 r e f e r  t o  the  amplitude of 

the e l e c t r o s t a t i c  f luc tua t ions ,  and should be mult ipl ied by a fac tor  of two to 

obtain t he  power spec t r a l  index. 

The bes t - f i t t i ng  spec- 

The s c a t t e r  of spec t r a l  

An attempt w a s  made t o  cor re la te  t he  spec t r a l  indices at a given plasma 

posit ion with t h e  plasma density,  t h e  neut ra l  gas density,  the  ion k ine t i c  

temperature, t h e  plasma energy density,  t he  plasma f loa t ing  poten t ia l ,  and t h e  

amplitude 4, of the  turbulence. None of these produced an iden t i f i ab le  sys- 

tematic t rend  i n  t h e  spec t ra l  index. The only observed t rend  w a s  t he  tendency 

of the  median value of t he  spec t r a l  indices of the  data obtained t o  be d i f fe r -  

ent for  t h e  s i x  posi t ions i n  t h e  plasma, as i l l u s t r a t e d  i n  Fig. 8. These 
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differences are thought t o  be due t o  t h e  d i f f e r ing  magnetic f i e l d  conditions 

ra ther  than t o  the  d i f fe ren t  plasma densi t ies  within the  magnetic b o t t l e ,  

since no systematic dependence of spec t r a l  index on plasma density was appar- 

ent  at a given posi t ion i n  the  magnetic f i e l d .  

operating conditions 

each of t h e  s i x  posit ions i n  t h e  plasma. The posi t ion on the  axis at t h e  mag- 

n e t i c  f i e l d  midplane had gradients of ne i ther  mametic f i e l d  or plasma energy 

density,  and might therefore  be an approximation t o  an i n f i n i t e  plasma. 

other f ive  posi t ions afford various combinations of energy density and magne- 

t i c  f i e l d  gradients.  

For a given s e t  of plasma 

d i f fe ren t  values of t h e  spec t r a l  index were obtained at 

The 

OBSERVATION OF ENERGY CASCADING I N  FWQUENCY-SPACE 

The correct direct ion of t he  net energy cascade i n  a turbulent spectrum 

has been a vexing question i n  plasma theory for  many years.  Some investiga- 

t o r s  have maintained t h a t  plasma turbulence i s  analogous t o  conventional hy- 

drodynamic turbulence , i n  t h a t  t h e  ne t  turbulent energy t r ans fe r  proceeds 

from low wavenumbers t o  high wave-numbers (and hence presumably t o  high fre- 

quencies),  where it i s  eventually d iss ipa ted  as thermal motions of t he  plasma 

consti tuents.  Another school of thought holds t h a t  at  high wavenumbers, but 

below t h e  wavenumber corresponding t o  the  Debye length,  t he  direct ion of the  

net energy cascade i s  from large wavenumbers t o  s m a l l  wavenumbers. 

6 

25 

Two sets of experimental observations were made i n  t h e  course of t h i s  

experiment which may have some bearing on determining the  direct ion of t he  

turbulent energy cascade. It should be noted t h a t  a l l  measurements herein 

were made below the  ion gyro frequency and t h e  ion plasma frequency. The 

f i r s t  c lass  of observations i s  i l l u s t r a t e d  by the  data discussed i n  the  
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following two  sect ions,  i n  which subharmonics of t h e  externally imposed osci l -  

l a t i on  peaks are not observed. 

low are t y p i c a l  i n  t h i s  respect of a l l  data  taken t o  date. One can argue t h a t  

i f  the  energy were cascading downward i n  frequency, then perhaps one might 

expect t o  observe subharmonics of the  fundamental frequencies. The observa- 

t i o n  only of harmonics can perhaps be in te rpre ted  t o  imply t h a t  t h e  turbulent 

energy i s  cascading upward in  frequency. 

The data presenCed i n  Figs. (12) and (13) be- 

The second s e t  of experimental observations relevant t o  the  direct ion of 

energy cascading are based on t h e  following argument: If there  existed a 

broad peak on the  turbulent spectrum t h a t  coupled energy from an external  

source t o  t h e  turbulent  spectrum, then one might expect t o  observe one of t h e  

two s i tua t ions  i l l u s t r a t e d  schematically i n  Fig. 9.  In  Fig. 9 ( a ) ,  the  energy 

i s  assumed t o  be cascading upward i n  frequency, so  t h a t  an energy input a t  

some frequency would enhance t h e  spec t r a l  amplitude at frequencies above the  

frequency i n  question. The expected shape of  t h e  spectrum i s  shown as t h e  

s o l i d  l i n e  f o r  a l i nea r  and a logarithmic p lo t  of  turbulent amplitude as a 

function of frequency, and it i s  assumed t h a t  t h e  turbulent  spectrum obeys 

the  power-law r e l a t i o n  given by Eq. (3).  

In  Fig. g ( b )  is  shown the  s i tua t ion  expected i f  t he  energy i s  fed i n  at 

a given frequency, but cascades downward toward lower frequencies. In  t h i s  

case one might expect t h e  spectrum i l l u s t r a t e d  by the  s o l i d  l i n e s ,  i n  which 

the  addi t ional  energy input i s  car r ied  t o  lower frequencies. By looking for  

one or t h e  other of the  types of spec t ra  shown i n  Fig. 9 ,  one might get an in-  

dication of t he  direct ion of  energy f l o w  i n  t h e  turbulent  spectrum. 

A requirement for  t h e  observation of one or t h e  other of t h e  spectra  

shown i n  Fig. ( 9 )  i s  an osc i l la t ion  at which energy i s  being in j ec t ea  i n t o  
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t he  turbulent spectrum. The high ion temperature of t h i s  plasma, and t h e  

Maxwellinanization of t h e  ion energy, i l l u s t r a t e d  i n  Figs. 2 and 3, are ind i -  

cative of s ign i f icant  energy t r a n s f e r  t o  the  plasma. Multiple-sweep waveforms 

of t he  e l e c t r o s t a t i c  po ten t i a l  measured with a capacit ive probe a re  shown on 

Fig. (10) for  f ive sweep ra tes .  

prominent i n  Figs. lO(a)  and 1 0 ( b ) ,  appears t o  t r i g g e r  the higher frequency 

osc i l l a t ions ,  and i s  the  continuity-equation osc i l l a t ion  described elsewhere. 26,27 

The in t e rna l ly  generated damped osc i l l a t ion  a t  170--kHz, grominent i n  

Figs. 10(b)  and l O ( c ) ,  would appear t o  be t h e  frequency at which s igni f icant  

energy is  t ransfer red  t o  the  ions ,  perhaps by t h e  damping shown. The osc i l la -  

t i o n s ,  observable i n  Figs. 10(d)  and l O ( e ) ,  a r e  at t he  ion plasma frequency 

i n  the  anode r ing  sheath. 

The low frequency osc i l la t ion  at about 18 kHz 

On Fig. 11 are  shown two examples i n  which the  plasma operating condi- 

t ions  were such t h a t  t h e  damped osc i l l a t ion  w a s  at s l i g h t l y  higher frequen- 

c ies .  The upper par t  of t h e  f igure shows the  r a w  spectrum between 0 and 1 

MHz, and t h e  waveform of the  osc i l la t ions .  The damped nature of t he  osc i l la -  

t i o n  producing the  peak i s  again evident. A t  t h e  bottom of Fig. 11 these two 

examples are  p lo t ted  on log-log sca les .  The enhancement of the  spectrum above 

the osc i l l a t ion  peaks i s  qui te  evident. This enhancement was observed at fre- 

quencies above t h e  osc i l l a t ion  peaks i n  a l l  cases s tudied,  and resembles the  

s i t ua t ion  i n  Fig. 9 ( a ) ,  which would be expected f o r  energy cascading t o  higher 

frequencies. It would appear plausible  t h a t  t h e  spec t r a l  enhancement repre- 

sents an energy input t o  the  plasma t h a t  i s  responsible f o r  the  observed ion 

heating, i n  whole or i n  par t .  



RESPONSE OF PLASMA TO 

Spectra of t h e  e l e c t r o s t a t i c  

c i r cu i t  shown on Fig. 4, and with 

12 

SINUSOIDAL EXTERNAL EXCITATION 

po ten t i a l  f luctuat ions were taken with the  

the  AC amplif ier ,  capacitor,  and inductor i n  

the  c i r c u i t .  Fig. 12(a)  w a s  taken without ex terna l  exci ta t ion of the plasma, 

as a standard of comparison. A prominent peak i s  apparent a t  t h e  continuity- 

equation osc i l l a t ion  frequency. 26y27 There are  no subharmonic peaks v i s ib l e  

at 1 / 2 ,  1/3, e tc .  o f  t he  continuity equation frequency. Clearly defined sub- 

harmonics were never observed i n  t h i s  experiment > although harmonics were 

qui te  common (they are  o f f  sca le  i n  Fig. 1 2 ) .  Occasionally a minor osc i l la -  

t i o n  peak, l i k e  t h a t  shown i n  Fig. 1 2 ( a ) ,  would shif 't  frequency s l i g h t l y  t o  

"lock on" t o  a subharmonic of t he  exc i ta t ion  frequency, as i l l u s t r a t e d  i n  

Figs. 1 2 ( e )  and 1 2 ( f ) .  

hancement on e i t h e r  s ide  of the  osc i l l a t ion  peak, presumably implying t h a t  

t he  osc i l l a t ion  i n  question w a s  only weakly coupled t o  the  turbulent spectrum, 

i f  at a l l .  

In Fig. 12 (a ) ,  there  i s  no s igni f icant  asymmetric en- 

On Fig. 12(b)  - 1 2 ( i )  are s h m  spec t ra  fo r  t he  same plasma conditions 

t h a t  produced Fig. 12 (a ) ,  but with an addi t ional  1 .5  kV rms sinusoidal  s igna l  

imposed on t h e  anode r ing  at t h e  exc i ta t ion  frequency indicated.  One can see 

at l e a s t  two harmonics of the  imposed frequency, and s ide  bands of the  contin- 

uity-equation frequency at t h e  imposed frequency and at harmonics of t he  i m -  

posed frequency. The amplitude of t he  continuity-equation osc i l l a t ion  i s  re- 

duced as t h e  frequency of t he  ex terna l  modulation approaches t h a t  of  t h e  con- 

tinuity-equation osc i l l a t ion .  In  Fig. 1 2 ( i ) ,  t h e  continuity-equation peak i s  

f ina l ly  suppressed with the  exc i ta t ion  frequency at 32 e 5 kHz. 

On Fig. 13 i s  i l l u s t r a t e d  the  phenomenon of plasma " lab i l i ty" ,  by which 

i s  meant t h e  tendency of a plasma t o  generate harmonics or show improved mode 
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coupling at 

c i t a t ion  i s  

cer ta in  preferred frequencies. The spectrum with no external  ex- 

shown i n  Fig. 13(a) .  This spectrum exhibi ts  the  continuity equa- 

t i on  osc i l l a t ion  at 22.5 kHz, and th ree  of i t s  harmonics. The e f f ec t  of a 

750 V rms sinusoidal  exc i ta t ion  i s  shown i n  Figs. 13(b) t o  1 3 ( f ) .  One e f f ec t  

of t he  external  exc i ta t ion  i s  t o  grea t ly  reduce t h e  spec t r a l  amplitude of t h e  

continuity-equation osc i l l a t ion .  

t he  external  frequency approaches the  continuity-equation frequency, u n t i l  t h e  

la ter  i s  scarcely apparent at an ex terna l  exc i ta t ion  of 20 kHz. The tendency 

of the  plasma t o  enhance harmonics of t h e  imposed frequency near t h e  continu- 

ity-equation frequency and i t s  harmonics is  qui te  apparent. The harmonic and 

sideband generation observed i n  the  present experiment i s  consistent with the  

nonlinear e f f ec t s  observed by other inves t iga tors ,  of which the  difference 

frequency generation reported by Krivoruchko and Kornilov28 (1970) i s  an ex- 

ample. 

This suppression becomes more apparent as 

EFFECT OF EXTERNAL EXCITATION ON I O N  K I N E T I C  TEMPERATURE 

A t  t h e  outset  of the  present experiment, it was  considered possible t h a t  

t he  imposed AC power might be wel l  coupled t o  t h e  turbulent  spectrum at  the  

continuity-equation frequency. The e f f ec t s  of  t h e  external  AC modulation were 

assessed by imposing a 5 kV RMS AC s igna l  on the  anode r ing ,  and measuring the  

ion energy with the  retarding po ten t i a l  energy analyzer shown i n  Fig. 4. 

On Fig. 14 is  shown a p lo t  of t he  ion k i n e t i c  temperature as a f’unction 

of the  frequency of the  imposed AC s igna l ,  fo r  th ree  background pressures of 

deuterium gas. These data  were taken with a 20 kV DC b ias  on the  anode ring. 

The data points at zero frequency are t h e  ion energies with no ex terna l  AC 

modulation of the  anode voltage. There i s  a s l i g h t  tendency of the  ion 
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k ine t i c  temperature t o  r i s e  with increasing frequency, amounting t o  almost a 

fac tor  of two  i n  energy on the  lowest curve shown. The heating e f f ec t  of the  

AC power w a s  nevertheless not marked, and no preferred "resonant" frequency 

became apparent below 100 kHz. The absence of any s igni f icant  heating e f f ec t  

of t he  AC power i s  consistent with t h e  qua l i t a t ive  features  of t he  ( typ ica l )  

spec t ra l  curves presented i n  Figs. 12 and 13. In  all of these spectra ,  t he  

imposed frequency appears as a sharp, narrow peak with no s igni f icant  asym- 

metry of t h e  background spectrum around i t s  base. Had t h i s  imposed frequency 

been w e l l  coupled t o  the  turbulent  spectrum, one perhaps would expect t h e  im-  

posed frequency peak t o  be broad, of lower amplitude, and b e t t e r  f a i r ed  i n  t o  

the background spectrum. 

DISCUSSION 

The measurements of turbulent spec t ra  made i n  the  present invest igat ion 

agree with current theor ies  of plasma turbulence i n  t h a t  they conform t o  a 

power-law dependence, given by Eq. (31, of spec t r a l  amplitude on frequency. 

These measurements appear t o  disagree with current t h e ~ r i e s l - ~  which predic t  

a universal  power l a w  of t h e  form k e The present results give v , 
where t h e  range of n i s  generally below 2 .5 ,  and n depends on t h e  plasma 

character iseics .  A simple proport ional i ty  between w and k ,  given by Eq. 

( 2 ) ,  therefore  can not hold i n  t h i s  bounded laboratory plasma. 

not surpr is ing t h a t  t h e  dispersion r e l a t ion  f o r  t h i s  plasma i s  more complicat- 

ed than a simple proport ional i ty .  

tween a k -2*5 power l a w  and the  present r e s u l t s ,  the  dispersion r e l a t ion  

-2.5 -n 

It i s  perhaps 

However, i n  order t o  obtain agreement be- 
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would i t s e l f  have t o  be a power l a w  of t h e  form 

k - & @  

where 

2.5 p = n. ( 5 )  

Since the re  i s  no precedent i n  l inear ized ,  cold plasma theory f o r  a dispersion 

re la t ion  s i m i l a r  t o  Eq. (4) with p assuming a continuous range of values 

depending on the  plasma and magnetic f i e l d  charac te r i s t ics ,  it therefore  ap- 

pears t h a t  t h e  present r e su l t s  are i n  disagreement with ex is t ing  theories  of 

plasma turbulence. 

This disagreement has a lso been noted i n  i so l a t ed  cases reported by 

other experimental invest igators .  

cies near 1 .0  GHz;  Bo1 and E l l i s 1 3  have observed 

Serafini” has observed n = 1.3; Batten e t  al.  

(Figs. 3 t o  5 of Ref. 8 ) ;  F. F. Chen has reported n = 2.3; Bo1 has ob- 

Ape1I7 has observed n = 2.75 at frequen- 

n = 1.25 or n = 2.0; 

a have observed 0.5 - -  < n < 1.0 

9 

served 

D’Angelo and Enriques15 have observed 

n = 2.4 ( the  present authors in te rpre ta t ion  of Fig. 6 of Ref, 41, 
16 n = 2.4 and 2.5,  and Noon e t  al. 

have observed n = 1.0.  These invest igat ions appear t o  agree with the  present 

r e su l t s  i n  t h a t  t h e  spec t r a l  amplitudes can be represented by a power-law re la -  

t ionship i n  frequency space, and t h e  spec t r a l  amplitudes were generally some- 

what below the  value n = 2.5 predicted by ex i s t ing  theories .  

By examining t h e  turbulent spectrum i n  t h e  v i c i n i t y  of an osc i l la t ion  

peak whose waveform w a s  observed t o  be damped, information was obtained t h a t  

indicates  t h a t  t h e  energy t ransfer red  t o  the  spectrum by t h i s  damping cascades 

upward i n  frequency. It would appear implausible t h a t  t h e  spectrum would be 

enhanced above t h e  osc i l l a t ion  peak i f  the  energy were cascading t o  lower f re-  

quencies e Whenever s ign i f icant  enhancement of t he  turbulent spectrum near an 
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osc i l l a t ion  peak was observed i n  t h i s  invest igat ion,  it w a s  always on t h e  high 

frequency s ide  of an osc i l l a t ion  peak. 

CONCLUSIONS 

The present invest igat ion appears t o  j u s t i f y  t h e  following conclusions: 

and over t h e  frequency range 0.2 t o  1. ) In  t h e  absence of o sc i l l a t ion  peaks 

1.0 M€Izs t h e  spec t ra l  amplitude of e l e c t r o s t a t i c  po ten t i a l  f luctuat ions i n  the  

plasma studied follows a power-law re la t ion  of t h e  form 

spec t r a l  index n i s  a function of the  plasma charac te r i s t ics  and of t h e  mag- 

ne t i c  f i e l d  charac te r i s t ics .  

l a rge r  than the  uncertainty of  an individual  measurement, and the  median value 

of t he  data obtained over t h i s  range i s  generauy below the  value n = 2.5 

predicted by ex is t ing  theories  of plasma turbulence. 4 . )  The direct ion of net 

energy cascading i n  frequency space appears t o  be from low t o  high frequencies 

f o r  t he  present experiment. 5. ) The non-linear character of t he  plasma gener- 

a tes  harmonics of an external ly  imposed exci ta t ion frequency, and also gener- 

a tes  sidebands of pre-existing plasma osc i l l a t ions .  6. ) The plasma exhibited 

the  phenomenon of  " l ab i l i t y" ,  i n  which harmonics of t he  external  exci ta t ion 

frequency were preferen t ia l ly  enhanced i n  t h e  v i c i n i t y  of t h e  continuity-equa- 

t i o n  osc i l l a t ion  and i t s  harmonics. 7 . )  Externally imposed s inusoidal  s ig-  

na ls  of frequencies below 50 kHz did not  l ead  t o  s ign i f icant  heating of t he  

ions i n  t h e  plasma. 

served i n  the  region of severa l  hundred kHz, below both t h e  ion cyclotron and 

ion plasma frequencies. 

t he  ion heating observed i n  t h i s  plasma. 

Qov -n . 2 . )  The 
Q = 

3 . )  The spec t r a l  index var ies  over a range much 

8.)  A damped osc i l l a t ion  of undetermined or ig in  w a s  ob- 

This damped osc i l l a t ion  appears t o  be responsible fo r  
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TABLE I 

RANGE OF PLASMA CHARACTERISTICS AT PROBE LOCATION NUMBER 5 

= 0.38, B = 1.OT DEUTERIUM GAS, Bmin/Bmax max 

= 0.65 T Bprobe 

PLASMA CHARACTERISTIC LOW VALUE 

Neutral Number Density 

Electron Number Density 

Electron Kinetic Temperature 

Ion Kinetic Temperature 

Plasma Potent ia l  

Electron Plasma Frequency 

Electron Gyro Frequency 

Ion Plasma Frequency ( D  ) 

Ion Gyro Frequency ( D  ) 

Debye Distance 

+ 
+ 

12 1 . 5 ~ 1 0  /cm 

5x10 7/ cm3 

8.3 e V  

350 e V  

+45 vol t s  

64 MHZ 

18 GHz 

1.0 MHZ 

5 MHz 

0.1 mm 

HIGH VALUE 

2.  5x1012/ cm3 

5x10 / cm3 

38 e V  

930 e V  

+230 vo l t s  

202 MHZ 

3.3 M H Z  

6.5 mm 
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FIGURF: CAPTIONS 

1. Photograph of the plasma studied i n  t he  present invest igat ion.  The ve r t i -  

ca l  element i n  the  center i s  the  anode r ing ,  biased t o  posi t ive poten t ia l s  

of up t o  40 k i lovo l t s .  The plasma i s  approximately 15  centimeters i n  dia- 

meter at the  midplane. 

2 .  Typical retarding po ten t i a l  curve from the  ion energy analyzer. The or- 

dinate i s  t h e  axial f lux  of ions whose energies exceed t h e  value shown on 

the  abscissa.  The bes t - f i t t i ng  integrated Maxwellian d is t r ibu t ion  i s  

shown, whose ion k ine t i c  temperature i s  710 eV.  

3. Relationship of DC anode voltage t o  deuterium ion k ine t i c  temperature f o r  

four background pressures of deuterium. The maximum magnetic f i e l d  was 

2.0 T f o r  t h i s  s e r i e s  of runs. 

Schematic of apparatus used fo r  the  measurement and recording of turbulent 

spec t ra ,  and study of t he  e f f e c t s  of ex terna l  modulation of t he  anode vol- 

tage.  During the  measurement of turbulence spec t ra ,  t he  two capacitive 

probes were mounted p a r a l l e l  on a forked support, one of which was on the  

magnetic f i e l d  ax i s ,  and one of  which was 3 cm of f  axis. 

inductor,  and capacitor used for  exc i ta t ion  of t he  anode r ing  w e r e  discon- 

nected during the  spec t r a l  index measurements, 

(a)  Cross-sectional drawing of t h e  capacit ive probe used. ( b )  Frequency 

response of t he  capacit ive probe measuring system shown i n  f igure 4 ,  but 

without t he  high-pass f i l t e r .  

Location of  the  s i x  posit ions within t h e  plasma at  which turbulent spec t ra  

were taken with capacit ive probes. Posit ions 2 and 5 were 9.4 cm from t h e  

midplane, at approximately the  point of maximum magnetic f i e l d  gradient.  

4. 

The amplifier,  

5 8  

6 .  



7.  

8. 

9. 
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Positions 4 t o  6 were 3.0 cm from t h e  magnetic axis. 

2.6:1, with 

Two examples of the turbulence spec t ra  taken i n  t h i s  invest igat ion f o r  a 

fixed s e t  of plasma conditions, about at t h e  midrange of Table I. Run 

KL-22 was taken at posi t ion 2 on Fig. 6 ,  and KL-23 at posi t ion 4 on Fig. 

6. a)  t h e  r a w  data ,  on a l inear- l inear  scale .  b )  t h e  da ta  from ( a ) ,  

corrected for t h e  system cal ibrat ion and p lo t t ed  on a log-log scale .  

t h e  power-law dependence of t h e  spectra.  

Sca t te r  p lo t  of t he  spec t r a l  index n ,  from observed spec t ra  of t he  form 

(p = (pov 

consequence of varying t h e  plasma conditions over t h e  range indicated i n  

Table I ,  and was much la rger  than the  e r r o r  associated with a given run. 

( a )  Linear and logarithmic p lo t  of expected e l e c t r o s t a t i c  turbulence 

spectrum for  case i n  which energy ,is added t o  plasma at  a d iscre te  fie- 

quency, and then cascades t o  higher frequencies and smaller sca le  s izes .  

( b )  Linear and logarithmic p lo t  of  expected e l e c t r o s t a t i c  turbulence 

spectrum f o r  case i n  which energy is added a t  a d iscre te  frequency, but 

cascades downward i n  fxequency. 

The mirror r a t i o  w a s  

Bmax = 1 . 0  T. 

Note 

-n , at the  s i x  posit ions shown i n  Figure 6. The s c a t t e r  was a 

10. Multiple-sweep oscilloscope t r aces  of t h e  e l e c t r o s t a t i c  potential. f luctu- 

a t ions detected by a capacit ive probe under operating conditions producing 

unusually coherent osc i l la t ions .  Same axbi t rary v e r t i c a l  sca le  i s  used 

f o r  a l l  f ive  t races .  Time increases from r i g h t  t o  l e f t .  

11. Two examples of t h e  enhancement of t h e  turbulent  spectrum at frequencies 

above an osc i l l a t ion  peak, taken at plasma conditions near t h e  lower end 

of t h e  range shown i n  Table I. 

p lo t ted  on log-log scale  of plasma conditions producing an osc i l l a t ion  at 

a)  Waveform, r a w  spectrum, and spectrum 
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380 kHz. 

i s  being fed i n t o  turbulent spectrum. 

spectrum p lo t t ed  on log-log scales  of plasma conditions producing an os- 

c i l l a t i o n  at 320 kHz. 

12. Spectra i l l u s t r a t i n g  the  generation of harmonics and sidebands of an ex- 

t e r n a l  exci ta t ion frequency. The D.C. anode voltage w a s  held constant at 

15 kV, and exc i ta t ion  amplitude at 1 .5  kV rms. All spectra  have t h e  same 

a rb i t r a ry  v e r t i c a l  s ca l e ,  and the  same 0 - 100 kHz horizontal  sca le .  The 

plasma charac te r i s t ics  were at t he  lower l i m i t  of the  range indicated i n  

Table I. Note unidenti- 

f i ed  osc i l l a t ion  at 11 kHz, and continuity-equation osc i l l a t ion  at 62 kHz. 

b )  -i) Spectra with 1 . 5  kV rms external  exci ta t ion at frequency indicated.  

Note generation of harmonics of t h e  exc i ta t ion  frequency, and generation 

of sidebands of t he  continuity-equation osc i l l a t ion  frequency a t  t he  exci- 

t a t i o n  frequency and i t s  harmonics. Note suppression of continuity equa- 

t i o n  osc i l l a t ion  as exci ta t ion frequency approaches one-half of i t s  fre- 

quen cy. 

13. Spectra i l l u s t r a t i n g  plasma l a b i l i t y  at harmonics of an external  excita- 

t i o n  frequency. The D.C. anode voltage was held constant a t  2.0 kV.  All 

spec t ra  have the saae a rb i t ra ry  v e r t i c a l  s ca l e ,  and t h a  same 0 t o  100 kHz 

horizontal  scale.  

t he  range indicated i n  Table I. 

turned of f .  Note continuity-equation osc i l l a t ion  at 22.5 kHz and i t s  har- 

monics. b )  - f )  spectrum with 750 Vrms external exci ta t ion at frequency 

indicated.  Note suppression of  t h e  continuity-equation osc i l l a t ion ,  and 

Note damping of o sc i l l a t ion  i n  waveform, suggesting t h a t  energy 

b )  Waveform, r a w  spectrum, and 

a)  Spectrum w i t h  external  exci ta t ion turned of f .  

The plasma charac te r i s t ics  were near the  high end of 

a)  spectrum with external  exci ta t ion 
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enhancement of t he  harmonics of  exc i ta t ion  frequency t h a t  l i e  near the  

continuity-equation osc i l l a t ion  frequency and i t s  harmonics. 

14. Ion k i n e t i c  temperature as a function o f  frequency of 5 kV RMS sinusoidal 

modulation s igna l ,  f o r  th ree  pressures of deuterium gas Kinetic tempera- 

ture with no modulation i s  p lo t ted  at  zero frequency, 

tage was 20 k V  for a l l  runs a 

The DC anode vol- 
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